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1 Summary 
 

Domain-expert productivity programmers desire scalable application performance, but usually must rely on efficiency 
programmers who are experts in explicit parallel programming to achieve it. Since such efficiency programmers 
are rare, to maximize reuse of their work we propose encapsulating their strategies in mini-compilers for domain- 
specific embedded languages (DSELs) glued together by a common high-level host language familiar to productivity 
programmers. Our approach is unique in two ways. First, each mini-compiler not only performs conventional compiler 
transformations and optimizations, but includes imperative procedural code that captures an efficiency expert’s strategy 
for mapping a narrow domain onto a specific type of hardware. Second, the mini-compilers emit source code in an 
efficiency language such as C++/OpenMP or CUDA [19] that allows targeting low-level hardware optimizations using 
downstream compilers combined with auto-tuning, where many candidate implementations are generated and run to 
discover the best-performing variant. The result is source- and performance-portability for productivity programmers, 
and performance that rivals that of hand-coded efficiency-language implementations. 

SEJITS is a DSEL construction methodology that supports capturing expert programmers’ strategies with a 
combination of code templates and tree-driven code transformations based on a high-level, platform-independent 
representation of a problem. Our approach provides benefits that are difficult to achieve with libraries or general- 
purpose languages, including performance portability across platform types (e.g. CPU vs. GPU), tuning of inlined 
higher-order functions, just-in-time autotuning based on specific problem inputs, and optimizations based on narrow 
domain knowledge that is hard to capture in a general-purpose language. Our DSELs are as easy to use as libraries 
for domain experts and not much harder to create for efficiency programmers. We describe a framework that supports 
the SEJITS methodology and four implemented DSELs supporting common computation kernels. The nontrivial 
applications that use these kernels achieve performance portability across platforms and achieve measured performance 
comparable to hand-coded efficiency implementations, despite being written entirely in the productivity language 
Python      (http://python.org). 

In addition, we integrate SEJITS with the Knowledge Discovery Toolkit (KDT), a framework that supports complex 
analytic queries on massive semantic graphs. Specifically, we show two ways to customize KDT using SEJITS. First, 
the user can write custom graph algorithms by specifying operations between edges and vertices. These programmer- 
specified operations are called semiring operations due to KDT’s linear-algebraic abstractions. Second, the user can 
customize existing graph algorithms by writing filters that pass only a subset of individual vertices and edges of 
interest to the algorithmic kernel. For high productivity, both semiring ops and filters can be written in Python, using 
SEJITS to automatically translate them to a lower-level efficiency language. We show that the performance obtained is 
comparable to that of the native Combinatorial BLAS (Basic Linear Algebra Subprograms) engine (which is written in 
a low-level productivity language), and therefore that the productivity gained by using a high-level filtering language 
incurs essentially no cost in performance. Indeed, we also present a new roofline model that estimates the best possible 
performance for communication-bound graph traversals, and show that our implementations do not significantly deviate 
from that roofline. 

Overall, our results demonstrate that for several interesting classes of problems, efficiency-level parallel performance 
can be achieved by packaging efficiency programmers’ expertise in a reusable framework that is easy to use for both 
productivity programmers and efficiency programmers. 

http://python.org/
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2 Introduction 

 
Our goal is best illustrated by a short scenario that is common among our scientific colleagues. Paul, a productivity 
programmer whose main research area is biology, has prototyped a new graph algorithm in Python, a language that 
supports his domain well because of its library support for reading molecule files, graphing results, and so on. Since 
Python is too slow to run his algorithm on non-toy problems, Paul retains Elena, an efficiency programmer, to create a 
high-performance version of his algorithm that can exploit the parallelism of Paul’s multicore servers with GPUs. 

Since programmers like Elena are rare, we would like to reuse their work as widely as possible. Rather than 
rewriting Paul’s application entirely in C++ or CUDA, Elena might “package” the kernel of his algorithm as a library 
that can be called from Python, though the library would have to include enough generality to allow other scientists to 
tweak the algorithm without being efficiency programmers themselves. Furthermore, the library would have to adapt to 
hardware differences such as different numbers of cores or different models of GPU. Even on instruction-set-compatible 
hardware such as different Intel processors, differences in cache geometry or memory architecture might require quite 
different decisions to achieve the highest performance. 

In our approach, Elena instead designs an embedded domain-specific language (DSEL1) for Paul’s problem domain. 
DSELs provide a concise, semantically well-founded way for a programmer to express a computation in a natural 
notation. The abstractions provided by a DSEL can be chosen to make compilation effective, e.g. through domain- 
specific parallelism constructs or by guiding the programmer to express intent rather than process. Elena uses our 
framework to embed the DSEL in Python and create a lightweight compiler that converts her DSEL into source code 
in an efficiency language such as C++ or CUDA, which exposes enough hardware properties to effect “last-mile” 
optimizations such as cache blocking and which is well supported by a rich ecosystem of optimizing compilers. Because 
our framework makes the DSEL compiler much more compact and easier to write than a full compiler (indeed, the 
DSEL compiler is written in Python and is typically hundreds of lines rather than thousands), most of Elena’s effort 
is in expressing her strategy for mapping the computation to a specific hardware platform (or family of platforms) in 
the most efficient way. Her strategy may include producing a number of possible variants, each potentially optimal. 
The combination of procedural code and efficiency-language source code snippets that implement a DSEL compiler is 
called a specializer in our approach. The result is that although Paul’s application is source- and performance-portable 
and expressed in a productivity language (Python in our case, though our approach generalizes to other languages), its 
performance is comparable to that of an equivalent application coded entirely in an efficiency-level language. 

This report describes the following contributions: 
 

1. The SEJITS methodology (Selective Embedded Just-in-Time Specialization) for embedding DSELs into a 
common productivity language and creating specializers that generate efficient code from them. 

 
2. A framework called Asp that supports the embedding of DSELs in Python and implementation of lightweight 

DSEL compilers (specializers) in Python. Python is popular among productivity programmers and simplifies 
specializer creation for efficiency programmers: typical specializers are hundreds of lines long rather than 
thousands. Asp is implemented as a Python package that does not alter the interpreter in any way, ensuring 
existing Python code still runs. 

 
1Following Hudak’s [18] terminology, we use the acronym DSEL for Domain-Specific Embedded Languages to distinguish them from standalone 

or “external” DSLs. 
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Figure 1: Applications interact with one or more specializers, which may use all,  
some, or none of the features provided by the Asp framework. 

 
 

3. A demonstration of the approach via three implemented DSLs (specializers) for stencils2,Gaussian mixture model 
training, and communication-avoiding sparse linear algebra [29]) that use our framework. Both the specializers 
and the nontrivial Python applications that use them perform comparably to manually-tuned efficiency-language 
code. One of the specializers (Gaussian mixture model) can target either a multicore CPU or different models of 
GPU transparently to the application programmer, and its performance is close enough to hand-tuned code that 
the research group whose speech-processing application relies on it has replaced their C++ implementation with 
a Python/specializer implementation to accelerate research. 

 
4. A DSL that enables flexible filtering and customization of graph algorithms without sacrificing performance, 

by applying the SEJITS methodology to the Knowledge Discovery Toolkit (KDT), a framework for analyzing 
massive semantic graphs. We present a new roofline performance model [39] for high-performance graph 
computation, suitable for evaluating the performance of filtered semantic graph algorithms, and demonstrate 
that the strong scaling of our system for two different graph algorithms on graphs with millions of vertices and 
hundreds of millions of edges is very close to the best possible performance, despite allowing the algorithms to 
be expressed in the productivity language Python. 

 
We do not in general claim that our approach improves on the performance of highly-tuned libraries (although 

in some cases it does), but rather that it allows the reuse of strategies for computing different kernels by enabling a 
degree of runtime tuning and auto-tuning that is often difficult to achieve gracefully with libraries, even while allowing 
application writers to express key parts of their algorithms in a high-level language while enjoying the performance of 
an efficiency language. 

Section 3 describes the SEJITS methodology and what makes it different from other DSEL-based approaches. 
Section 4 describes the organization of typical specializers and the support provided by the Asp framework to simplify 
their creation. Section 5 describes four implemented specializers that use our framework and the performance of 
nontrivial applications that use them; all are either real customer applications maintained by researchers outside our 
group or standard domain benchmarks. That section also reflects on the results and discusses pros and cons of our 
approach. Section 6 compares our work to relevant prior work. Finally, Section 7 concludes with our thoughts on the 
role of the SEJITS approach for both productivity and efficiency programmers. 

 
 
3 Methods, Assumptions and Procedures 

 
3.1 The SEJITS Methodology 

 

Selective Embedded Just-in-Time Specialization (SEJITS) describes a methodology for building DSEL compilers in 
high-level languages that bridge the gap between productive programming and high performance. In our approach the 
DSEL compiler includes domain-specific, imperative procedural code that captures domain-specific and hardware- 
specific knowledge, such as what code variants make sense to generate, how to tile or block memory, which partitioning 
strategy to use in subdividing the parallelism in the problem, and so on. 

DSELs in other approaches usually transform constructs into lower-level constructs within the same language. 
This approach is common in languages that support metaprogramming, such as Scheme, Gambit, and Haskell. In 
contrast, our approach allows programmers to write specializers for languages without first-class metaprogramming, 
increasing the range of languages in which DSELs can be embedded. Furthermore, SEJITS concentrates on utilizing 

 
2A stencil is a data-parallel structured grid computation in which each point in an N-dimensional grid is updated according to a function of its 

neighbor points. The function, boundary calculations, and the number of neighbors considered are application-specific. 
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the language’s FFI (foreign function interface) for these specializers, allowing them to take advantage of downstream 
optimizing compilers by linking object code resulting from DSEL compilation with non-specialized productivity code 
in Python. This support for external compilers, combined with our framework’s ability to easily “templatize” existing 
source code in efficiency languages such as C or CUDA, means that a specializer can start out as a simple “wrapping” of 
existing efficiency-level code (e.g. an efficiency programmer’s specific solution to one problem instance) and gradually 
generalize the strategy to handle a wider range of problems, further simplifying the learning curve required to build a 
specializer. 

A key advantage of our approach for specializer writers is that this procedural code can be written in a high-level 
language (in our case Python) and can leverage the extensive support we provide for “common” tasks such as abstract 
syntax tree manipulation, low-level code generation and caching, and so on. As a result, the typical specializer comprises 
a modest number of lines of Python code and does not require a deep understanding of compilers to create, because the 
source language is highly constrained and we provide a variety of building blocks for implementing specializers in a 
very high-level language. 

In fact, the SEJITS approach can be thought of as providing two major capabilities: embedded DSLs that use 
the foreign function interface and run-time code generation with auto-tuning. These two pieces work together to 
enable all the benefits outlined above, but can in fact be used without each other. For example, even a library such 
as for sparse matrix multiplication, which can be thought of as “trivial” DSEL that expresses a single construct, can 
benefit from run-time code generation since the code can be tailored to the particular matrix and particular machine 
the computation is running on, yielding high performance. Such trivial DSELs are an important aspect of obtaining 
fast parallel performance from a productivity language. Thus, although the combination of FFI-enabled embedded 
DSELs and run-time code generation enables some of the most interesting uses of the approach, even high performance 
libraries can use the SEJITS approach. 
3.2 Assumptions 

 

We assume domain scientists will be able to express their applications using Python code, Python libraries, and 
Python-embedded DSELs as described in the foregoing sections. From the application writer’s point of view, the DSELs 
behave like high-level libraries. We assume a POSIX-like environment in which standard build tools such as the gcc 
toolchain can be invoked at runtime; even environments such as Windows have this support via CygWin or similar 
packages. 

We have created a number of specializers targeting different types of hardware, including Intel-compatible multicore 
CPUs and CUDA-capable GPUs (graphics processing units). Each specializer makes specific assumptions, noted in its 
description, about what hardware is available. 

Our integration with the Knowledge Discovery Toolkit (KDT) assumes that KDT is already installed and running 
on the target hardware. 

 
3.3 Procedures 

 

We implement and describe four specializers and some scientific applications that use them: stencils, Gaussian mixture 
model training, graph algorithms, and matrix powers. In our framework, each specializer is used by subclassing from a 
specific Python class and implementing specializer-specific virtual methods. Runtime translation is performed when 
these methods are subsequently called. Python code outside of any DSEL is executed normally by the Python interpreter; 
our approach does not modify the standard Python distribution in any way. 

The individual subsections of Section 5 describe specific aspects of interest in each specializer’s construction and 
show performance results of the specializer in a nontrivial application, thereby demonstrating the benefit to productivity 
programmers. 

 
 
4 Specializers in the Asp Framework 

 
Figure 1 summarizes how Asp3, specializers, and applications interact in a system. Because specializers can be built 
even without the facilities provided by the Asp framework, only some of the specializers in the figure utilize it. Below 
we discuss features provided by the Asp framework and a prototypical architecture for specializer implementations. 

 
3Asp  is  SEJITS  for  Python,  http://github.com/shoaibkamil/asp 

http://github.com/shoaibkamil/asp
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Figure 2: Lines of code in each phase of two specializers described in Section 5;  

each has some additional lines of utility code. 
 
 

4.1 Framework features 
 

The framework provides two main mechanisms for specializers to generate code: templates and tree transformations. 
Templates are efficiency-level code interspersed with productivity-code fragments and control code to fill in substrings 
based on properties determined at specialization time. These can embed values ranging in complexity from a single 
scalar value to complex efficiency-language statements, such as loop nests dependent on input properties for depth, and 
are rich enough that some specializers rely solely on templates. 

For domains in which the efficiency-level code depends in a complex way on the DSEL source, we also provide 
support for tree transformations. It is common for specializers to use templates and tree transformations together to 
handle scenarios in which part of the output source code depends in a complex way on the input, while other parts such 
as helper functions are relatively static. 

Since compilers are generally written as a multi-phase pipeline processing an intermediate tree data structure, Asp 
is built to facilitate rapid construction of specializers of this architecture in few lines of code. 

The front-end parser is largely eliminated by the use of an embedded DSL, and back-end runtime code gener- 
ation and caching from a target-language abstract syntax tree is supplied by Asp. Backends can target a variety of 
high-performance languages and compiler tools, leveraging the existing investment in these tools for target-specific 
optimization. We leverage CodePy (mathema.tician.de/software/codepy) for C/C++-based backends,  and  a 
Scala backend is in development. 

For intermediate phases, our framework provides a visitor-pattern abstraction for tree traversal and a concise 
language for specifying strongly-typed intermediate representations. This intermediate representation reflects the 
semantics of the computation at hand, using the (imperative) Python source code as a declarative description of the 
computation. In other words, though computations in the DSELs are expressed as imperative code, the translation to 
the intermediate representation only translates what to compute, not how. The DSEL compiler is free to compute the 
declarative specification in whatever manner suits the domain and underlying hardware. 

Other Asp features are targeted at specific phases. Each target language backend provides default translations for 
common DSEL constructs such as arithmetic and conditional expressions—in most cases, DSEL implementers only 
need to specify transformations for custom, domain-specific nodes. 

During target-specific optimization, specializers rely on Asp to interrogate available hardware, to perform common 
generic optimizations such as loop unrolling and cache blocking, and to select the best among several generated code 
variants. 

The combined effect of these features on code size reduction in specializers is dramatic, with complete production 
specializers such as the stencil and KDT specializers requiring only a few hundred lines of Python code, as shown in 
Figure 2. 

Because specializers rely on generating source code and compiling it into dynamic shared libraries, caching is an 
important part of our approach as it amortizes the compilation time over many runs if subsequent calls can use the 
cached version. We leverage CodePy’s integrated caching (which caches compiled code by comparing MD5 hashes of 
the source) but also include a higher-level caching method that allows specializers to dictate whether, based on runtime 
parameters, an existing version is runnable. 
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§ Specializer Application Logic Tmpl. Targets Performance Remarks 
5.1 Stencil (structured 

grid) 
Bilateral image fil- 
tering 

656 0 C++/OpenMP, 
Cilk+ 

91% of achievable peak based on 
roofline model [40] 

5.2 Matrix powers (Akx) Conjugate  gradient 
solver 

200 2000 C/pthreads 2-4 times faster than SciPy 

5.3 Gaussian mixture 
model (GMM) 
training 

Speech diarization 800 3600 CUDA, Cilk+ CPU & GPU versions fast enough 
to replace original C++/pthreads 
code 

5.4 Graph algorithms with 
KDT 

Graph500 bench- 
mark 

325 0 C++/MPI 99% of performance of handcod- 
ing in C++ 

 

Figure 3: For each specializer we report the LOC of logic, LOC of templates, target languages, and a summary of the 
performance of the Python+SEJITS application compared to the original efficiency-language implementations. Recall 
that specializer logic is Python code that manipulates intermediate representations in preparation for code generation 

and templates are static efficiency- language “boilerplate” files into which generated code is interpolated. Our framework 
itself comprises 2094 LOC providing common functionality such as tree manipulation, code generation, compiler 

toolchain control, code caching, runtime hardware detection, and transforming common Python constructs such as 
simple arithmetic expressions into SM nodes. 

4.2 Flexibility 
 

Because they are invoked at runtime, specializers can generate different output code depending on the problem inputs 
(i.e. arguments to DSEL methods). A simple example is fixing the upper bound of a loop over an input matrix based on 
its runtime dimensions. A more sophisticated example occurs in the matrix powers specializer (Section 5.2), which 
samples statistics over matrix elements to help select the best blocking format for a particular problem. 

Specialization may fail for a number of reasons: The code written by the application programmer may be valid in 
the host language, but not represent a valid DSEL program; the specializer may only be able to emit code for a compiler 
or hardware target that is unavailable at runtime; or downstream errors may be encountered in the code generation 
phase (e.g. invoking the compiler), due to errors in the specializer or misconfiguration. To this end, we recommend 
that each specializer include an implementation of its DSEL written purely in the embedding language, in our case 
Python. Asp automatically falls back to running this alternate version (albeit with poor performance) if specialization 
fails, improving source portability. For most specializers, a warning is issued in this case, to encourage programmers to 
express their code in the supported subset and explain the poor performance. 

 
 
5 Results and Discussion 

 
In this section we describe four implemented specializers, and for each one, report on its performance in the context 
of a widely-used scientific application. The specializers cover stencils (structured grid problems), Gaussian mixture 
model training, graph algorithms, and matrix powers. Each specializer subclasses from a specific Python class 
and implements specializer-specific virtual methods. Runtime translation is performed when these methods are 
subsequently called. Python code outside of any DSEL is executed normally by the Python interpreter; our approach 
does not modify the standard Python distribution in any way. 

Figure 3 shows the four specializers on which we report, emphasizing the benefit of SEJITS to efficiency program- 
mers by reporting on the approximate size of each specializer, a proxy for the efficiency programmers’ effort to create it. 
The subsequent sections describe specific aspects of interest in each specializer’s construction and show performance 
results of the specializer in a nontrivial application, thereby demonstrating the benefit to productivity programmers. 
Note that for each specializer, multiple applications have been developed using it; we outline only a single application 
due to space constraints. 

For many of these domains, there is no universally acknowledged “gold standard” for comparing performance. We 
therefore compare against publicly-available, widely-used libraries and compilers for each domain that are generally 
accepted as providing good efficiency-level performance. Where possible, we also characterize performance as a portion 
of achievable peak based on hardware characteristics. For reported performance numbers, we elide JIT compilation 
time (which is on the order of seconds, mostly due to running an external compiler), since caching means that code 
generation and compilation occur only the first time a particular problem is run— subsequent executions occur at full 
speed. 
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class Div3D(StencilKernel): 
def kernel(self, in_grid1, in_grid2, in_grid3, out_grid): 

for  x  in  out_grid.interior_points(): 
for  y  in  in_grid1.neighbors(x,  1): 

out_grid[x]  =  out_grid[x]  +  C1*in_grid1[y] 
for  y  in  in_grid2.neighbors(x,  1): 

out_grid[x]  =  out_grid[x]  +  C2*in_grid2[y] 
for  y  in  in_grid3.neighbors(x,  1): 

out_grid[x]  =  out_grid[x]  +  C3*in_grid3[y] 
 

 
Figure 4: Python source code for 3D divergence kernel using the stencil DSEL. The user may specify grid 

connectivity or use defaults provided by the specializer. Note the inclusion of DSEL abstractions for interior 
points and neighbors, which avoids the analysis that optimizing compilers must perform when analyzing the 

ordered loops typical of an efficiency-language stencil implementation. 
 

for (int x1x1=1; (x1x1<=256); x1x1=(x1x1+(1*256))) { 
for (int x2x2=1; (x2x2<=256); x2x2=(x2x2+(1*32))) { 

#pragma omp parallel for 
for (int x1=x1x1; (x1<=min((x1x1+255),256)); x1=(x1+1)) { 

for (int x2=x2x2; (x2<=min((x2x2+31),256)); x2=(x2+1)) { 
#pragma ivdep 

for (int x3=1; (x3<=(256-0)); x3=(x3+(4*1))) { 
//fully-unrolled neighbor loop, 
//unrolled  further  by  4 

} } } } } 
 

 
Figure 5: The presence of optimizations makes the optimized C++ source code the simple 3D divergence kernel harder to 
read and maintain. In Python, this is essentially two nested loops, while the optimized C++ is a 5-deep nest due to cache 

blocking, with loop bounds that are closely tied to the memory architecture of the target machine. 
 

5.1 Stencils 
 

Structured grid computations, also called stencil computations, consist of updating each grid point in an n-dimensional 
grid with some function of a subset of its neighbors. Stencils occur in image processing, solving linear equations, 
simulations of physical phenomena, and many other domains. 

Why a Specializer: Depending on the specific application, the update function and the definition of a neighbor 
are highly problem-dependent. A general library would need to perform at least one function call per point. With 
more advanced techniques such as expression templates in C++, the operator can be inlined but optimizations cannot 
take advantage of many properties of the stencil. Although a stencil computation is conceptually straightforward, 
achieving good performance requires many optimizations, including blocking the computation in space and/or time 
explicitly [21, 11] or using cache-oblivious algorithms [16], vectorizing [30], or other techniques combining these 
optimizations such as polyhedral analysis [41]. 

The result is that the straightforward computation shown in Figure 4 becomes the complex and difficult-to-read 
code shown in Figure 5. 

Details of Specializer: Our stencil specializer uses a cache-aware approach plus auto-tuning to generate fast, 
parallel efficiency code in either Intel Cilk+ or C++/OpenMP from the stencil DSEL shown in Figure 4. We have not 
yet implemented a GPU code generator, but nothing in the specializer structure precludes doing so. 

The specializer implements two optimizations described in [21]: thread/cache blocking in phase 4 (target-class 
optimization) and register blocking in phase 5 (target-specific optimization). The class of stencils it can specialize is 
non-trivial but incomplete: only a single output grid is allowed, which precludes specializing many important kernels. 
Future work will expand this class, and any stencil outside the class is executed in pure Python with no changes to 
source code. All results in this paper use double-precision data, but the specializer also supports single-precision and 
will soon support integers. 

Kernel Results: We show stencil specializer results for two kernels (a 3D 7-point Laplacian kernel and a 3D 7-point 
divergence kernel) which are discussed in detail in previous work on auto-tuning and occur in a variety of applications 
including climate simulation [21]. These computations are memory bandwidth-bound, and the roofline performance 
model [40] tells us the strategy to obtain the best performance is to reduce capacity cache misses. 

Figure 6(a) compares the performance of the two kernels against that of the Pochoir stencil compiler [35], which 
offline-compiles a DSEL embedded in C++ into output targeted for the Intel C++ compiler. Unlike our cache-aware 
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algorithm, Pochoir implements a cache-oblivious algorithm and runs sub-problems using Intel Cilk+. Because Pochoir’s 
cache-oblivious algorithm benefits from blocking across timesteps, we show results for both a single timestep and for 
the average over 5 timesteps of a stencil. In all cases, the pure-Python code took three to four orders of magnitude 
longer to run, and is therefore not shown. 

For both the divergence and Laplacian kernels, the specializer slightly outperforms Pochoir for a single timestep. 
Since Pochoir can take advantage of temporal locality between timesteps (theoretically reducing the cache traffic to 
minimum [16]), we expect it to outperform our tuner for multiple timesteps; our results show that it is faster when 
taking advantage of temporal locality. We have very recently implemented DSEL extensions in the stencil specializer to 
express multiple timesteps, and modified the code generator to output explicit cache-aware code that reduces memory 
traffic to the theoretical minimum; this work is currently being prepared for publication. Therefore, we report only 
results from our non-timestep aware DSEL. 

Performance as a percentage of single-timestep roofline peak is also in Figure 6. For the Laplacian kernel, our 
specializer obtains 91% of peak memory bandwidth, and 66% for the divergence kernel. Note that the peak memory 
bandwidth on the machine is dependent on the number of memory streams; thus the peak for the divergence kernel is 
higher than for the Laplacian kernel. 

Application Results: The application is a 3D bilateral filter for reducing noise and enhancing important features 
in MRI (magnetic resonance imaging) images of the brain [28]. It combines spatial and signal weights to create an 
edge-preserving smoothing filter. Such an application requires applying the filter with varying radii to highlight features 
of different sizes. The application loads MRI data using the NiBabel neuro-imaging library (nipy.sourceforge.net) 
and displays output data using matplotlib (matplotlib.sourceforge.net), both conveniently available to Python 
programmers; this illustrates the benefit of selecting a popular common embedding language with broad library support. 

Unlike the previous two kernels, the bilateral filter uses all neighboring points within the set radii; for example, 
this means it is a 27-point stencil with r = 1 and a 343-point stencil with r = 3. In addition, the weight of each 
neighbor point is determined through an indirect table lookup into a small array, indexed by the intensity difference 
and multiplied by a function of the distance; this lookup can potentially result in much slower performance. For this 
application, the roofline model shows it is bound by in-core computation (because the lookup table is in cache, the 
computation required to compute the index is more costly), and from the mix of floating point and non-floating point 
operations, we can expect to obtain at most 62% of peak floating point performance on our test machine. 

Figure 6(a) shows the performance of the computationally-intense portion of the bilateral filter application. Remark- 
ably, the performance is even better than what is obtained by Pochoir, perhaps due to assumptions the Pochoir compiler 
makes about the stencil function (particularly related to indirect accesses). As shown in Figure 6(a), the specialized 
bilateral filter kernel obtains up to 24% of maximum floating point performance, which could be increased were our 
code better vectorizable. This performance is over three orders of magnitude faster than pure Python and is excellent 
for a computation-bound problem. 

It is important to contextualize these performance gains by also examining the productivity improvement realized 
by using our stencil DSEL. As a gross metric, the lines of code for the optimized generated stencils are at least an order 
of magnitude larger; in addition, they encapsulate a large amount of domain-specific tuning knowledge, such as which 
order to traverse the grids, blocking for cache and registers/vectorization, etc. Furthermore, the optimal parameters 
change depending on the particular stencil problem. Pochoir helps reduce the necessity of programmers needing to 
know these low-level details to some extent, but is hampered by the need to write code in C++ as well as requiring an 
offline-compilation process. Overall, the stencil specializer produces very fast code with high productivity, enabling 
domain programmers to write in a high-level language and gain the performance of hand-tuned parallel low-level 
programming. 

 
5.2 Communication-Avoiding Sparse Linear Algebra 

 

Many algorithms for solving sparse linear systems (Ax = b), or for finding eigenvalues of a sparse matrix, are iterative 
processes that access the matrix A with one or more sparse matrix-vector multiplications (SpMVs) per iteration. Since 
an SpMV must read a matrix entry from memory for every 2 useful floating-point operations, Demmel et al. have 
proposed communication-avoiding algorithms that improve performance by trading redundant computation for memory 
traffic [29]. Both serial and parallel implementations can benefit from these algorithms, as communication in the serial 
case refers to memory-to-cache traffic. 

We have implemented a specializer for a communication-avoiding matrix powers kernel (so-called Akx). Matrix 
powers computes Ax, A2x, . . . , Ak x (or some equivalent basis that spans the same vector space) for matrix A, vector 
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Figure 6: (a) Summary of stencil performance (log-scale) on an Intel Core i7 870 (2.93 GHz) for 3D grid sizes of 
2583. Bilateral filter radius is shown as r. Since Pochoir can benefit from temporal locality across timesteps, we also 

show the average per-timestep time for Pochoir over 5 iterations. In all cases, the pure Python performance (not 
shown) was at least 3 orders of magnitude slower than specialized performance. (b) Conjugate Gradient solver 

performance using communication-avoiding matrix powers kernel on a dual-socket Intel Xeon X5550 (2.67 GHz) on test 
matrices from finite-element and fluid dynamics applications (www.cise.ufl.edu/research/sparse/matrices). A 
matrix labeled 141K/7.3M has 141K rows and 7.3M  nonzero elements. The dark part of each bar shows time spent on 
matrix powers while the light part shows time in the remainder of the solver. Note that the convergence properties are at 

most 4.5% worse for 10−6 reduction in |r|2; however, we report time per step since the decision to use CA-CG is 
independent of our tuner. 

 
 

x, and a small constant k. Akx is an important ingredient in Krylov-subspace solvers such as Conjugate Gradient (CG), 
because once the computation has been performed, the next k steps of the solver can proceed without further memory 
accesses to A by combining vectors from this set. 

Why a Specializer: Although this specializer does not lower any user-provided code, the tuning logic associated 
with blocking and tiling (which requires inspecting input values, as described below) was easy to write in Python. To 
the best of our knowledge, our Akx specializer is the first publically available productivity-friendly 
implementation of communication-avoiding Akx. 

Details of Specializer: The specializer partitions the set of matrix rows into cache blocks, and computes a cache 
block’s entries in all k output vectors before moving on to the next cache block. This will only work if the matrix 
structure is such that the dependencies between cache blocks do not get too large. In addition to cache-blocking the 
matrix, the usual SpMV optimization of register tiling reduces the memory size of the matrix and makes it possible to 
use SIMD instructions. The specializer generates code for different blocking and tiling formats using templates, and 
chooses among them by auto-tuning. (The choice of k must be made outside the specializer, as it affects the rest of a 
Krylov-subspace method too.) 

Kernel and Application Results: We have implemented a Communication-Avoiding Conjugate Gradient (CG) 
solver, the simplest useful Krylov-subspace method solver, in Python. The CG solver uses the Akx specializer and 
calls the Intel Math Kernel for the operations other than matrix powers. Although MKL is well-optimized, the ability 
to compose the Akx computation with the solver’s subsequent dot product operations would avoid having to read the 
vectors from memory an extra time. (As described later, specializer composition is an important avenue for future 
work.) Nonetheless, our CG solver runs several times faster than SciPy’s serial and non-communication-avoiding 
efficiency language implementation, and in fact is even faster than MKL’s optimized parallel CG implementation. The 
convergence properties for our test matrices differ slightly between the two CG algorithms on a few of the matrices 
(at worse requiring 4.5% more multiplies), but the decision as to whether the difference is meaningful depends on the 
application. 

Figure 6(b) shows the results, demonstrating both the algorithmic and auto-tuning benefits of our CG implementation. 

http://www.cise.ufl.edu/research/sparse/matrices
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5.3 Gaussian Mixture Model Training 
 

Gaussian Mixture Models (GMMs) are a class of statistical models used in speech recognition, image segmentation, 
document classification and numerous other areas. To apply GMM-based techniques to a particular problem, GMMs 
must be “trained” to match a set of observed data. The most common training algorithm, Expectation Maximization 
(EM), is computationally intensive, iterative, and highly data-parallel, making it particularly amenable to specialization 
for multicore hardware with wide SIMD vector support. 

Why a Specializer: Current parallel implementations of the EM algorithm such as [32] employ a fixed strategy 
for mapping the algorithm’s data-parallelism onto the parallel hardware. However, the best-performing mapping for 
various EM algorithm substeps depends on both the GMM problem size and hardware platform parameters [10]. 

Details of Specializer: The specializer can emit either CUDA or Cilk+ code using two included sets of templated 
implementations. The specializer selects the best algorithm variant at runtime based on the size of the training problem 
and the available hardware, relying primarily on the SEJITS framework’s templating mechanisms to instantiate the 
variant. 

Kernel Results: Figure 7(a) shows that the GMM training performance of our specializer can beat even the 
handcoded CUDA [32] implementation by selecting the best-performing algorithmic variant at runtime based on 
training problem size [10]. The specializer can emit CUDA and Cilk+ code, making it performance-portable both 
within and across architecture families with no changes to client Python applications like the one we describe below. 

We are confident that future work on specializers for other components of the application will allow us to meet the 
domain target of 200×RT (see next section). 

Application Results: Our target application, a meeting diarizer [1] that identifies the number of speakers in a 
recorded meeting and determines who spoke when, originally consisted of about 3000 lines of C++ with pthreads. 
Repeated GMM training was the performance bottleneck. The new implementation consists of about 100 lines of 
Python implementing the body of the application, plus a specializer consisting of about 800 lines of Python and 3600 
lines of CUDA and Cilk+ templates. The reason the specializer is so large is because it integrates a large number of 
tuned implementations that were not present in the original application’s GMM implementation, including support for 
multiple backends. Note also that the specializer is not specific to this application; that is, a number of other applications 
have been developed that utilize the specializer, in a variety of domains [10]. 

Speech recognition domain experts evaluate performance according to the real-time factor (×RT) metric. For 
example, 100×RT means that 1 second of audio can be processed in 1/100 second. An important domain target is 
≥ 200×RT, at which point online approaches to speaker diarization become fast enough to obviate further research in 
offline approaches. (We have not yet investigated what components of the processing pipeline should be specialized 
next in order to make further progress towards that goal.) 

Figure 7(b) shows that our Python implementation with specialized EM training achieves 50% of that goal, using 
the CUDA and Cilk+ specializers, while the original C++/pthreads application only gets to 10%. 

 
5.4 Integrating SEJITS with KDT for Graph Algorithms 

 

Large-scale graph analytics are a central requirement of bioinformatics, finance, social network analysis, national 
security, and many other fields. Going beyond simple searches, analysts use high-performance computing systems to 
execute complex graph algorithms on large corpora of data. Often, a large semantic graph is built up over time, with the 
graph vertices representing entities of interest and the edges representing relationships of various kinds—for example, 
social network connections, financial transactions, or interpersonal contacts. 

In a semantic graph, edges and/or vertices are labeled with attributes that may represent (for example) a timestamp, 
a type of relationship, or a mode of communication. An analyst (i.e. a user of graph analytics) may want to run a 
complex workflow over a large graph, but wish to only use those graph edges whose attributes pass a filter defined by 
the analyst. For example, consider a graph whose vertices are Twitter users, and whose edges represent two different 
types of relationships between users. In the first type, one user “follows” another; in the second type, one user “retweets” 
another user’s tweet. Each retweet edge carries as attributes a timestamp and a count. An example query we will use in 
this section is a breadth-first search (BFS) of vertices reachable from a particular user via the subgraph consisting only 
of “retweet” edges with timestamps earlier than June 30, 2009. 

The Knowledge Discovery Toolkit [26] is a flexible Python-based open-source toolkit for implementing complex 
semantic graph algorithms and executing them on high-performance parallel computers. KDT achieves high perfor- 
mance by invoking computational primitives supplied by a parallel C++/MPI backend, the Combinatorial BLAS or 
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Figure 7: (a) Performance of GMM training over a range of number of components in the mixture model (M), 

which in many applications varies as the application algorithm converges. CUDA results are from an 
NVIDIA GTX480. Cilk+ results are from dual-socket Intel X5680 Westmere (3.33 GHz). “Pangborn” is the 

original native CUDA implementation from [32]. (b) Diarizer application performance as a multiple of real 
time; “100×” means that 1 second of audio can be processed in 1/100 second. The Python application 

using CUDA and Cilk+ outperforms the native C++/pthreads implementation by a factor of 3-6. 
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KDT has graph abstractions and uses a very high-level language. Combinatorial BLAS has sparse linear-

algebra abstractions, and geared towards performance. 
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CombBLAS [7]. To exploit this performance, an expert user must be able to express a desired graph computation (graph 
traversal and filtering) as sparse matrix computations in terms of algebraic semiring operations, such as the tropical 
(min,+) semiring for shortest paths, or the real (+,*) semiring/field for numerical computation. Two fundamental kernels 
in CombBLAS, sparse matrix-vector multiplication (SpMV) and sparse matrix-matrix multiplication (SpGEMM), then 
explore the graph by expanding existing frontier(s) by a single hop. The semiring scalar multiply operation determines 
how the data on a sequence of edges are combined to represent a path, with a filtered multiply returning a “null” object 
(formally, the semiring’s additive identity or SAID) if the filter predicate is not satisfied. The semiring scalar add 
operation determines how to combine two or more parallel paths. For example, Figure 9 (top) shows the scalar multiply 
operation for our running example of BFS on a Twitter graph. The usual semiring multiply for BFS is select2nd, 
which returns the second value it is passed; the multiply operation returns the second value if the filter succeeds. 

Filters expressed this way have high performance because the number of calls to the filter operations is asymptotically 
the same as the minimum number of necessary calls to the semiring scalar multiply operation, and the filter itself is a 
local operation that uses only the data on one edge. However, translating a graph computation into its equivalent semiring 
algebra representation is beyond the expertise of most users interested in graph analytics. Therefore, recent versions of 
KDT also allow users to instead define graph filters as predicates that act to modify KDT’s action based on the attributes 
that label individual edges or vertices. Users define these filters in Python, but doing so results in a serialized upcall to 
Python on every operation, slowing performance by nearly two orders of magnitude—80×—compared to defining the 
filters directly in C++or expressing the computation in semiring linear algebra. This section presents new work that 
allows nonexpert KDT users to define Python filters without paying the performance penalty of Python upcalls. 

To accomplish this, we use SEJITS to define two semantic-graph-specific domain-specific languages (DSL), as 
shown in Figure 11(a,b): one for filters and one for the user-defined scalar semiring operations for flexibly implementing 
custom graph algorithms. These implement the specialization necessary for filters and semirings written in (a subset of) 
Python to execute as efficiently as low-level C++ code. The DSLs are proper subsets of Python with normal Python 
syntax, but they restrict the kinds of operations and constructs that users can utilize in filters and semiring operations. 
The filter DSEL expresses what a filter can do: a filter takes in one or two inputs (that are of pre-defined edge/vertex 
types), must return a Boolean, and is allowed to do comparisons, accesses, and arithmetic on immediate values and 
edge/filter instance variables. In addition, to facilitate translation, we require that a filter be an object that inherits 
from the PcbFilter Python class, and that the filter function itself use Python’s usual interface for callable objects, 
requiring the class define a function _call_ . Figure 9 shows an “old style” KDT filter in native C++, its expression in 
our filter DSEL, and how it would be added to a graph in SEJITS-enhanced KDT. The filter DSEL version defines a 
fully-valid Python class that can be translated into C++ since it only uses constructs that are part of our restricted subset 
of Python. For the semiring DSEL, unary and binary operations used in semirings and other operations in KDT are 
similarly defined, but must inherit from the PcbFunction class and must return one of the inputs or a numeric value 
that corresponds to the KDT built-in numeric type. 

As with our other DSELs, the first time a specialized filter or semiring function is called from Python, its source 
code is introspected (using existing Python facilities) to get the Abstract Syntax Tree (AST) in Python. The appropriate 
specializer (filter or semiring) maps this AST to a domain-specific AST for that DSEL; each specializer defines tree 
transformations that dictate how this occurs. For example, the Python function definition for call is translated 
into either a UnaryPredicate or BinaryPredicate node in the case of the filter embedded DSL, depending on how many 
inputs it accepts. The resulting domain-specific AST must comply with the filter or semiring semantic model, which 
defines the semantics of valid translatable objects. The semantic models for both filter and semiring DSELs allow the 
user to examine the input data types, do comparisons, and perform arithmetic on fields. Figure 10 shows the semantic 
model for the filter DSEL. ASTs conforming to this semantic model are “correct-by-construction”, that is, they obey 
the restrictions of what can be safely translated. For example, we require that the return value of a filter be provably a 
Boolean (by forcing the BoolReturn node to have a Boolean body), and that there is either a single input or two inputs 
(either UnaryPredicate or BinaryPredicate). If a user-provided filter or semiring operation violates the corresponding 
semantic model, we run it in pure Python as usual: unspecializable code still runs correctly, albeit much more slowly. 

After translation into an AST compliant with the appropriate semantic model, the rest of the translation is straight- 
forward, utilizing Asp’s infrastructure for converting semantic models into backend code. For many of these transfor- 
mations, defaults built into Asp are sufficient; for example, we leverage the default translation for Python arithmetic 
operations and numeric constants. The end result of this step is source code in C or C++ containing the function in 
a private namespace plus some KDT glue code. This source file is passed to CodePy, which compiles it into a small 
dynamic link library that is then automatically loaded into the running Python interpreter. Finally, because of code 
caching built into CodePy, all calls after the first will just directly call the specialized and compiled function, skipping 
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ParentType multiply( const TwitterEdge & arg1, 
const ParentType & arg2) 

{ 
time t end = stringtotime(”2009/06/30”); 
if (arg1.isRetweet() && arg1.latest(end)) 

return arg2; // unfiltered multiply yields normal value 
else 

 
} 

 
return ParentType(); // filtered multiply yields SAID 

 
class MyFilter(PcbFilter): 

def    init  (self, ts): 
self.ts = ts 

def    call  (self, e): 
# if it is a retweet edge 
if (e.isRetweet and 

# and it is before our initialized timestamp 
e.latest < self.ts): 

return True 
else: 

return False 
 

# G is a kdt.DiGraph 
def earlyRetweetsOnly(e): 

return e.isRetweet() and e.latest < str to date(”2009/06/30”) 
 

G.addEFilter(earlyRetweetsOnly) 
G.e.m aterializeFilter() # omit this line for on−the−fly filtering 

 

# perform some operations or queries on G 
 

G.delEFilter(earlyRetweetsOnly) 
 
 

Figure 9: Top: An example of a filtered scalar semiring operation in Combinatorial BLAS. This multiply 
operation only traverses edges that represent a retweet before June 30, 2009. Middle: Example of an edge filter 
that the translation system can convert from Python into fast C++ code. Note that the timestamp in question is 

passed in at filter instantiation time. Bottom: Adding and removing an edge filter in KDT,  
with or without materialization. 
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 UnaryPredicate(input=Identifier,   body=BoolExpr) 
BinaryPredicate(inputs=Identifier∗,   body=BoolExpr) 

check assert len(self.inputs)==2 
Expr = Constant | Identifier | BinaryOp | BoolExpr 
Identifier(name=types.StringType) 
BoolExpr = BoolConstant | IfExp | Attribute | BoolReturn | 

Compare | BoolOp 
Compare(left=Expr, op=(ast.Eq | ast.NotEq | ast.Lt | 

ast.LtE | ast.Gt | ast.GtE), right=Expr) 
BoolOp(op=(ast.And  | ast.Or  | ast.Not),  operands=BoolExpr∗) 

check assert len(self.operands)<=2 
Constant(value = types.IntType | types.FloatType) 
BinaryOp(left=Expr, op=(ast.Add | ast.Sub), right=Expr) 
BoolConstant(value = types.BooleanType) 
IfExp(test=BoolExpr,  body=BoolExpr,  orelse=BoolExpr) 
# this is for a.b   
Attribute(value=Identifier,   attr=Identifier) 
BoolReturn(value = BoolExpr) 
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Python 
 

 
 
 

C++ 
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KDT 

 
 
 
 
 

Python 
Filter 

 
Translate 

 
C++ 
Filter 

miring operations is similar, but 
ne of the input return types. 

 
 

First  Run Subsequent 
Codegen 0.0545 s  0 s 
Compile 4.21 s 0 s 
Import 0.032 s 0.032 s 

(a) KDT wit (b) KDT with SEJITS (c) SEJITS overhead 
 

Figure 11: (a) Calling process for filter operations in KDT (semiring operations is similar). For each edge, the C++ 
infrastructure must upcall into Python to execute the callback. (b) Using our DSLs, the C++ infrastructure calls the 
translated version of the operation, eliminating the upcall overhead. (c) Overheads of using the filtering DSL (on a 
36-core machine). After the first call, subsequent calls only incur the penalty of Python’s import statement, which 
loads the cached library. 

 
 

the specialization overhead. While this overhead does not exist when using native CombBLAS, it is trivial compared to 
the penalty of upcalling into Python, as Figure 11(c) shows. 

To integrate this translation machinery with KDT, we modified the normal KDT C++ filter objects, which are 
instantiated with pointers to Python functions, by adding a function pointer that is checked before executing the upcall 
to Python. This function pointer is set by the SEJITS translation machinery to point to the translated function in C++. 
We similarly modify KDT’s C++ function objects used for binary and unary operations. For both kinds of objects, 
the functions or filters are type-specialized using user-provided information. Future refinements will allow inferred 
type-specialization. 

We evaluate our approach using two graph queries, running each on both synthetic and real data. Our first query is a 
filtered graph traversal: Given a vertex of interest, determine the number of hops required to reach each other vertex by 
using only retweeting edges timestamped earlier than a given date. The query is therefore a breadth-first search (BFS) 
in the graph that ignores edges that do not pass the filter. We generate synthetic data using the R-MAT [24] model, 
which can generate graphs with a very skewed degree distribution. An R-MAT graph of scale N has 2N vertices and 
approximately edgefactor ·2N  edges. In our tests, our edgefactor is 16, and our R-MAT seed parameters a, b, c, and 
d are 0.59, 0.19, 0.19, 0.05 respectively. After generating this non-semantic (Boolean) graph, the edge payloads are 
artificially introduced using a random number generator in a way that allows us to set the target filter’s permeability 
(fraction of edges that will pass the filter). We also evaluate the query on anonymized Twitter data [23, 42] in which 
graph edges can represent two different types of interactions: one type of edge encodes the “following” relationship (a 
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Table 1: Sizes (vertex and edge counts) of different combined Twitter graphs. 
 

Label Vertices 
(millions) 

 
Tweet 

Edges (m 
Follow 

illions) 
Tweet&follow 

Small 0.5 0.7 65.3 0.3 
Medium 4.2 14.2 386.5 4.8 

Large 11.3 59.7 589.1 12.5 
Huge 16.8 102.4 634.2 15.6 

 
 

Table 2: Statistics about the largest strongly connected components of the Twitter graphs 
 

 Vertices Edges traversed Edges processed 
Small 78,397 147,873 29.4 million 

Medium 55,872 93,601 54.1 million 
Large 45,291 73,031 59.7 million 
Huge 43,027 68,751 60.2 million 

 
 

directed edge from vi to vj means that vi is following vj ) and another type encodes an abbreviated “retweet” relationship 
(a directed edge from vi to vj means that vi has mentioned vj at least once in his tweets). Retweet edges also track the 
number of such tweets (count) as well as the last tweet date if count is larger than one. 

Our second query is to find the maximal independent set (MIS) of this graph. MIS finds a subset of vertices such 
that no two members of the subset are connected to each other and all other vertices outside MIS are connected to at 
least one member of the MIS. Since MIS is defined on an undirected graph, we first ignore edge directions, then we 
execute Luby’s randomized parallel algorithm [25] implemented in KDT. The filter is the same as in the first query. We 
run this query on Erdő s-Rényi graphs [14] with an edgefactor of 4 because MIS on R-MAT graphs complete in very 
few steps due to high coupling, barring us from performing meaningful performance analysis. 

More details for these four different (small-huge) combined graphs is listed in Table 1. Contrary to the synthetic 
data, the real Twitter data is directed and we only report BFS runs that hit the largest strongly connected component 
of the filter-induced graphs. More information on the statistics of the largest strongly connected components of the 
graphs can be found in Table 2. Processed edge count includes both the edges that pass the filter and the edges that are 
filtered-out. 

The tweets occurred in the period of June-December of 2009. To allow scaling studies, we created subsets of these 
tweets, based on the date they occur. The small dataset contains tweets from the first two weeks of June, the medium 
dataset contains tweets that happened in June and July, the large dataset contains tweets dated June-September, and 
finally the huge dataset contains all the tweets from June to December. These partial tweets are then induced upon the 
graph that represents the follower/followee relationship. If a person tweeted someone or has been tweeted by someone, 
then the vertex is retained in the tweet-induced combined graph. 

We examine graph analysis behavior on two platforms. Mirasol is a single-node platform composed of four 
Intel Xeon E7-8870 processors. Each socket has ten cores running at 2.4 GHz, and supports two-way simultaneous 
multithreading (20 thread contexts per socket). The cores are connected to a very large 30 MB L3 cache via a ring 
architecture. The sustained stream bandwidth is about 30 GB/s per socket. The machine has 256 GB 1067 MHz 
DDR3 RAM. We use OpenMPI 1.4.3 with GCC C++ compiler version 4.4.5, and Python 2.6.6. Hopper is a Cray XE6 
massively parallel processing (MPP) system, built from dual-socket 12-core “Magny-Cours” Opteron compute nodes. In 
reality, each socket (multichip module) has two dual hex-core chips, and so a node can be viewed as a four-chip compute 
configuration with strong NUMA properties. Each Opteron chip contains six super-scalar, out-of-order cores capable of 
completing one (dual-slot) SIMD add and one SIMD multiply per cycle. Additionally, each core has private 64 KB 
L1 and 512 KB low-latency L2 caches. The six cores on a chip share a 6MB L3 cache and dual DDR3-1333 memory 
controllers capable of providing an average STREAM[27] bandwidth of 12 GB/s per chip. Each pair of compute nodes 
shares one Gemini network chip, which collectively form a 3D torus.  We use Cray’s MPI implementation, which 
is based on MPICH2, and compile our code with GCC C++ compiler version 4.6.2 and Python 2.7. Complicating 
our experiments, some compute nodes do not contain a compiler, which is necessary for SEJITS to perform runtime 
specialization; we ensured that a compute node with compilers available was used to build the SEJITS+KDT filters. 

Figure 12(a) shows the relative distributed-memory performance of four methods in performing breadth-first search 
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1% 10% 100% 

Filter Permeability 
 

(a) BFS Synthetic (Hopper) 

 
0.1  

 
1% 10% 100% 

Filter Permeability 
 

(b) BFS Synthetic (Mirasol) 

0.1  
KDT 

SEJITS+KDT     
CombBLAS     

small medium large huge 
Twitter Input Graph 

 

(c) BFS Twitter (Mirasol) 
 

Figure 12: (a) Relative breadth-first search performance of four methods: native C++ CombBLAS (yellow), 
SEJITS semiring DSL (blue), KDT with SEJITS-specialized Python filters (green), and KDT with 

unspecialized Python filters (red), using 24 Hopper nodes each containing two 12-core AMD processors. 
The y-axis is in seconds on a log scale. (b) Relative maximal independent set performance of the same four 

methods using 26 cores of Intel Xeon E7-8870 processors. (c) Relative filtered-breadth-first-search 
performance on real Twitter data using KDT (pure Python), KDT+SEJITS (runtime specialization of Python), 

and native CombBLAS (hand-coded C++), using 16 cores of Intel Xeon E7-8870 processors. 
 

on a graph with 32 million vertices and 512 million edges, with varying filter permeability, on Hopper. The structure of 
the input graph is an R-MAT of scale 25, and the edges are artificially introduced so that the specified percentage of 
edges pass the filter. These experiments are run on Hopper using 576 MPI processes with one MPI process per core. 
The SEJITS/SEJITS KDT implementation closely tracks CombBLAS performance, with the gap between it (blue line) 
and the Python/SEJITS KDT implementation (green line) growing as permeability increases. This is expected because 
as the permeability increases, more semiring operations are performed, making Python based semiring operations a 
bottleneck. We also include the performance of a materialized filter, a different filtering strategy in which the filter is 
first applied to the entire graph resulting in a new copy of the graph with the filter applied. KDT supports this 
capability, but we did not augment it with SEJITS; however, we report its performance here because in this example the 
filter rate is so high that it showcases the situation in which the filter restricts the query to a localized neighborhood. 
In such cases, the on-the-fly filter would avoid touching most of the graph while the materialized filter needs to 
process all the edges. The effects of filter permeability on the MIS performance are shown in Figure 12(b). 

Figure 12(c) shows the relative performance of four systems in performing breadth-first search on real graphs that 
represent the Twitter interaction data on Mirasol. We chose to present 16 core results because that is the concurrency in 
which this application performs best, beyond which synchronization costs start to dominate due to the large diameter 
of the graph after the filter is applied. Since filter to semiring operations ratio is very high (on the order of 200- 
1000), SEJITS translation of the semiring operation did not change the running time.  Therefore, we only include 
a single SEJITS+KDT line to avoid cluttering the plot.  SEJIT+KDT’s performance is identical to the performance 
of CombBLAS in these data sets, showing that for real-life inspired cases, our approach is as fast as the underlying 
high-performance  library. 

Since SEJITS specializes both the filter and the semiring operation, we discuss the effects of each specialization 
separately. CombBLAS achieves remarkable linear scaling with increasing process counts (34-36X on 36 cores), while 
SEJITS+KDT closely tracks its performance and scaling: All of the performance plots show that the performance when 
both the filter and the semiring are specialized with SEJITS is very close to the CombBLAS performance. (Single core 
KDT runs did not finish in a reasonable time to report.) We do not report performance of materialized filters as they 
were previously shown to be the slowest. 

The Python/SEJITS case is typically slower than the SEJITS/SEJITS case, with the gap depending on the permeabil- 
ity as discussed previously. In the BFS case, shown in Figure 13, Python/SEJITS is 3 − 4× slower than SEJITS/SEJITS 
when permeability is 100% due to the high number of semiring operations, but only 20 − 30% slower when permeability 
is 1%. The scaling of MIS, shown in Figure 14, is more sensitive to semiring translation, even for low permeabilities. 
The semiring operation in the MIS application is more computationally intensive, hence specializing semirings become 
more important in MIS. 

Parallel scaling studies of BFS at higher concurrencies is run on Hopper, using the scale 25 synthetic R-MAT 
data set. Figure 15 shows the comparative performance of KDT on-the-fly filters, SEJITS+KDT specializing filters 
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Figure 13: Parallel ‘strong scaling’ results of filtered BFS on Mirasol, with varying filter permeability on a 
synthetic data set (R-MAT scale 22). Both axes are in log-scale, time is in seconds. 
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Figure 14: Parallel ‘strong scaling’ results of filtered MIS on Mirasol, with varying filter permeability on a 
synthetic data set (Erdős-Rényi scale 22). Both axes are in log-scale, time is in seconds. 

 
only, SEJITS+KDT specializing both filters and semiring operations, and native CombBLAS, with 10% and 25% filter 
permeability. 
5.5 A roofline model of Breadth-first Search 

 

In addition to evaluating the performance improvement of KDT when using SEJITS rather than pure Python for filters 
and semiring operations, we also show that our performance compares favorably to the best performance achievable in 
principle on breadth-first search (BFS) graph algorithms using SEJITS-enhanced KDT. In this section, we extend the 
Roofline model [39] to quantify the performance bounds of BFS as a function of optimization and filter success rate. 
The Roofline model is a visually intuitive representation of the performance characteristics of a kernel on a specific 
machine. It uses bound and bottleneck analysis to delineate performance bounds arising from bandwidth or compute 
limits. In the past, the Roofline model has primarily been used for kernels found in high-performance computing. These 
kernels tend to express performance in floating-point operations per second and are typically bound by the product of 
arithmetic intensity (flops per byte) and STREAM [27] (long unit-stride) bandwidth. In the context of graph analytics, 
none of these assumptions hold. 

In order to model BFS performance, we decouple in-core compute limits (filter and semiring performance as 
measured in processed edges per second) from memory access performance. The in-core filter performance limits were 
derived by extracting the relevant CombBLAS, KDT, and SEJITS+KDT versions of the kernels and targeting arrays 
that fit in each core’s cache. We run the edge processing inner kernels 10000 times (as opposed to once) to obfuscate 
any memory system related effects to get the in-core compute limits. 

Analogous to arithmetic intensity, we can quantify the average number of bytes we must transfer from DRAM per 
edge we process — bytes per processed edge. In the following analysis, the indices are 8 bytes and the edge payload is 
16 bytes. BFS exhibits three memory access patterns. First, there is a unit-stride streaming access pattern arising from 
access of vertex pointers (this is amortized by degree) as well as the creation of a sparse output vector that acts as the 
new frontier (index, parent’s index). The latter incurs 32 bytes of traffic per traversed edge in write-allocate caches 
assuming the edge was not filtered. Second, access to the adjacency list follows a stanza-like memory access pattern. 
That is, small blocks (stanzas) of consecutive elements are fetched from effectively random locations in memory. These 
stanzas are typically less than the average degree. This corresponds to approximately 24 bytes (16 for payload and 8 for 
index) of DRAM traffic per processed edge. Finally, updates to the list of visited vertices and the indirections when 
accessing the graph data structure exhibit a memory access pattern in which effectively random 8 byte elements are 
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Figure 15: Parallel ‘strong scaling’ results of filtered BFS on Hopper, with varying filter permeability on a 

synthetic data set (R-MAT scale 25). Both axes are in log-scale, time is in seconds. 
 

Table 3: Statistics about the filtered BFS runs on the R-MAT graph of Scale 23 (M: million) 
 

Filter 
permeability 

Vertices 
visited 

Edges 
traversed 

Edges 
processed 

1% 655,904 2.5 M 213 M 
10% 2,204,599 25.8 M 250 M 
25% 3,102,515 64.6 M 255 M 

100% 4,607,907 258 M 258 M 
 
 

updated (assuming the edge was not filtered). Similarly, each visited vertex generates 24 bytes of random access traffic 
to follow indirections on the graph structure before being able to access its edges. In order to quantify these bandwidths, 
we wrote a custom version of STREAM that provides stanza-like memory access patterns (read or update) with spatial 
locality varying from 8 bytes (random access) to the size of the array (STREAM). 

The memory bandwidth requirements depend on the number of edges processed (examined), number of edges 
traversed (that pass the filter), and the number of vertices in the frontier over all iterations. For instance, an update to 
the list of visited vertices only happens if the edge actually passes the filter. Typically, the number of edges traversed is 
roughly equal to the permeability of the filter times the number of edges processed. To get a more accurate estimate, 
we collected statistics from one of the synthetically generated R-MAT graphs that are used in our experiments. These 
statistics are summarized in Table 3. Similarly, we quantify the volume of data movement by operation and memory 
access type (random, stanza-like, and streaming) noting the corresponding bandwidth on Mirasol, our Intel Xeon 
E7-8870 test system, in Table 4. Combining Tables 3 and 4, we calculate the average number of processed edges per 
second as a function of filter permeability by summing data movement time by type and inverting. 

Figure 16 presents the resultant Roofline-inspired model for Mirasol. Note that these are all upper bounds on the 
best performance achievable and the underlying implementation might incur additional overheads from internal data 
structures, MPI buffers, etc. For example, it is common to locally sort the discovered vertices to efficiently merge them 
later in the incoming processor; an overhead we do not account for as it is not an essential step of the algorithm. 

As the Roofline model selects ceilings by optimization, and bounds performance by their minimum, we too may 
select a filter implementation (pure Python KDT, SEJITS+KDT, or the CombBLAS limit) and the weighted bandwidth 
limit (in black) and look for the minimum. 

We observe a pure Python KDT filter will result in a performance bound that is lower than the bandwidth limit. 
Conversely, the bandwidth limit is about 5× lower than the CombBLAS in-core performance limit. Ultimately, the 
performance of a SEJITS specialized filter is sufficiently fast to ensure a BFS implementation will be bandwidth- 
bound. This is a very important observation that explains why SEJITS+KDT performance is so close to CombBLAS 
performance in practice even though its in-core performance is about 2.3× slower. 

 
 
 

Table 4: Breakdown of the volume of data movement by memory access pattern and operation. 
 

Memory 
access type 

Vertices 
visited 

Edges 
traversed 

Edges 
processed 

Bandwidth 
on Mirasol 

Random 
Stanza 
Stream 

24 bytes 
0 

8 bytes 

8 bytes 
0 

32 bytes 

0 
24 bytes 

0 

9.09 GB/s 
36.6 GB/s 
106 GB/s 
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Figure 16: Roofline-inspired model for filtered BFS computations. Performance bounds arise from 

bandwidth, CombBLAS, KDT, or SEJITS+KDT filter performance, and filter success rate. 
 

 
5.6 Discussion 

 

DSELs and Runtime Code Generation. Structurally, the Asp framework provides two distinct sets of capabilities— 
DSL embedding and runtime code generation—that work particularly well when combined: DSELs with well-chosen 
abstractions allow capturing programmer intent rather than implementation, simplifying the task of generating good 
code, while runtime code generation allows the target code to make late decisions based on details of the target platform 
and even the input data for each problem instance. Indeed, the matrix powers (Akx) specializer of Section 5.2 is not 
really a DSEL at all but a single method call, yet the characteristics of the problem (dependence on structure of input 
matrices, knowledge of cache geometry for tiling and blocking, etc.) made it appealing to use Asp’s runtime code 
generation as the delivery mechanism for the specializer, and as an added benefit allowed the optimized code to be 
called from Python. Conversely, a separate specializer on which we have not reported in this paper generates Java code 
for Hadoop (an open source implementation of Map/Reduce), allowing Python programs to embed other specializers in 
the body of a Map/Reduce computation. In that case, the DSEL embedding was more useful than the ability to generate 
optimized code at runtime. 

We conclude that the ability to embed lightweight DSELs and construct their compilers is separate from the ability 
to execute those compilers at runtime, but combining the two mechanisms opens new opportunities for bridging the 
productivity/performance gap. 

Disadvantages of DSLs. There are two main disadvantages to a DSL. The first is that programmers must learn a 
new language with a new syntax. We address this problem by embedding the domain-specific languages in a common 
host language. DSELs ease integration with existing code and allow developers to use a familiar syntax, making them, 
to a developer, appear as simple as using libraries. 

The second disadvantage is that the DSL implementor must invest substantial effort in tasks tangential to the 
problem domain, such as parsing the source language, performing generic optimizations, emitting the target language, 
and providing facilities for general computation that are outside the problem domain (file manipulation, e.g.). To this 
end, Asp is essentially a framework for doing JIT code generation of kernel-specific embedded DSLs, specifically 
designed to make it easy to capture a human-expert-created computation strategy. 

Reusability and Extensibility. Beyond simply moving the complexity of getting good performance from one site 
in the application to another, specializers are easily usable in new Python applications, and some such as the GMM 
specializer can even transparently target either multicore CPU or GPU at runtime depending on hardware availability. 
Reuse can be increased by providing existing specializers with additional code-generation back ends (for new hardware 
or compilers) or additional DSEL front-ends (for exposing the specializer to other productivity languages). 

While the most visible customers of Asp specializers are productivity programmers, Asp allows efficiency program- 
mers who devise and optimize highly-performant code to encapsulate their strategy in a specializer, greatly increasing 
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the potential for flexible reuse of that strategy. Although the initial effort for writing a specializer is more work than a 
one-off optimization of a particular application, we argue that the benefit is far greater— many more people can take 
advantage of the knowledge of an efficiency-level programmer through a specializer, and the overall effort is less than if 
the efficiency-level programmer were to hand-optimize several instances of computations in the same domain. 

Asp also provides an incremental adoption path for efficiency-level programmers: they can take an existing 
prototype written in an efficiency-level language, rapidly encapsulate it in an Asp specializer, and then gradually 
refine and generalize it over time. A common path is to embed an existing prototype in a template (see Section 4) 
and gradually add more “holes” into the template, into which runtime-computed values are substituted. Eventually an 
entire function or functions may be generated at runtime using tree transformation techniques. Automated tests help to 
ensure behavior is preserved during this refactoring. This incremental adoption strategy proved valuable in practice 
for our early adopters: the GMM and Akx specializer authors both began with a specific efficiency-level 
implementation that had limited support for sophisticated optimizations or multiple targets, and then added these 
features as the specializers were generalized. 

Performance Portability. The SEJITS approach provides performance portability: if the specializer can generate 
code for the target platform (e.g. x86 multicore) then the same Python application will get high performance across many 
machines; if the specializer can target multiple platforms (e.g. GPUs as well as multicore) then the same application 
will get high performance even across platforms. 

If no specializer exists, the code is still source-portable since it can run in unmodified Python. The portability aspect 
of productivity languages remains; with the SEJITS approach, that portability also extends across architectures and 
platforms. 

Graph Algorithms. 
The KDT graph analytics system achieves customizability through user-defined filters, high performance through 

the use of a scalable parallel library, and conceptual simplicity through appropriate graph abstractions expressed in a 
high-level language. 

We have shown that the performance hit of expressing filters in a high-level language can be mitigated by Just-in- 
Time Specialization. In particular, we have shown that our embedded DSL for filters can enable Python code to achieve 
comparable performance to a pure C++ implementation. A roofline analysis shows that the specializer enables filtering 
to move from being compute-bound to memory bandwidth- bound. We demonstrated our approach on both real-world 
data and large generated datasets. Our approach scales to graphs on the order of hundreds of millions of edges, and 
machines with thousands of processors. 

In future work we will further generalize our DSL to support a larger subset of Python, as well as expand SEJITS 
support beyond filtering to cover more KDT primitives. An open question is whether CombBLAS performance can be 
pushed closer to the bandwidth limit by eliminating internal data structure overheads. 

 
 
6 Related Work 

 
Going beyond libraries for domain experts. A popular way to provide good performance to productivity-language 
programmers has been to provide native libraries with high-level-language bindings such as SciPy (scipy.org), 
Biopython (biopython.org), BLAS [6], ScaLAPACK [5], and FFTW [15]. 

However, some DSEL benefits are difficult to achieve with libraries. One difficulty lies in conditioning code 
generation on the input problem parameters, as our GMM and Akx specializers do. The OSKI (Optimized Sparse 
Kernel Interface) sparse linear algebra library [38] precompiles 144 variants of each supported operation based on 
install-time hardware benchmarks that take hours to run, and includes logic to select the best variant at runtime, but 
applications using OSKI must still intermingle tuning code (hinting, data structure preparation, etc.) with the code that 
performs the calls to do the actual computations 

Another difficulty is the frequent mismatch between the library’s API and the preferred domain abstractions. For 
example, whereas solving a matrix in MATLAB is as simple as writing X = A\B, the same operation in ScaLAPACK 
requires the application programmer to determine the processor layout, initialize array descriptors for each input and 
output matrix, load the data so that each processor has the correct portions of the input data, and finally call the solve 
function. A higher-level language could be layered over ScaLAPACK to reduce this impedance mismatch; indeed, 
our approach does just this, but takes the additional step of embedding the higher-level language into a common host 
language and allowing greater flexibility in how the language is JIT-compiled. 

Finally, most widely-used libraries written in efficiency languages do not gracefully handle higher-order functions 
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as we needed for the stencil and graph specializers—even if the productivity language from which they’re called does 
support them. This is usually because the efficiency languages do not have well-integrated support for higher order 
functions themselves. Even libraries such as Intel’s Array Building Blocks (http://software.intel.com/en-us/ 
articles/intel-array-building-blocks/) or others using C++ expression templates cannot benefit from all 
the runtime knowledge available to DSEL compilers. Because SEJITS allows JIT compilation and allows DSELs to 
leverage the host language’s support of higher-order functions, it supports the tuning of such computations by lowering 
and inlining the interior functions. Thus, from the productivity programmer’s point of view, the experience of using 
SEJITS DSELs is not only similar to a library, but idiomatic in the productivity language. 

DSLs for bridging performance and productivity. Like the Delite project [9] (the most similar recent work to 
our own), we exploit domain-specific information available in a DSEL to improve compilation effectiveness. In contrast 
to that work, we allow compilation to external code directly from the structural and computational patterns expressed 
by our DSELs; in the Delite approach, DSELs are expressed in terms of lower-level patterns and it is those patterns that 
are then composed and code-generated for. Put another way, by eschewing the need for intermediate constructs, SEJITS 
“stovepipes” each DSEL all the way down to the hardware without sacrificing either domain knowledge or potential 
optimizations. The most prominent example of this is that SEJITS allows using efficiency-language templates to 
implement runtime-generated libraries (or “trivial” DSLs). Furthermore, auto-tuning is a central aspect of our approach, 
enabling high performance without needing complex machine and computation models. 

The Weave subpackage of SciPy allows users to embed C++ code in strings inside Python code; the C++ code 
is then compiled and run, and uses the Python C API to access Python data. Cython (cython.org) is an effort to 
write a compiler for a subset of Python, while also allowing users to write extension code in C. Both of these expose 
low-level interfaces for efficiency programmers. Closer to our own approach is Copperhead [8], which provides a 
Python-embedded DSEL that translates data-parallel operations into CUDA GPU code. 

Auto-tuning.  The idea of using multiple variants with different optimizations is a cornerstone of auto-tuning. 
Auto-tuning was first applied to dense matrix computations in the PHiPAC library (Portable High Performance ANSI C) 
[4]. Using parameterized code generation scripts written in C, PHiPAC generated variants of generalized matrix multiply 
(GEMM) with a number of optimizations plus a search engine, to, at install time, determine the best GEMM routine for 
the particular machine. The technology has since been broadly disseminated in the ATLAS package (math-atlas. 
sourceforge.net).  Auto-tuning  libraries  include  OSKI  (sparse  matrix-vector  multiplication)  [38],  SPIRAL  (Fast 
Fourier Transforms) [34], and stencils [21, 35], in each case showing large performance improvements over non- 
autotuned implementations. With the exception of SPIRAL and Pochoir, all of these code generators use ad-hoc Perl or 
C with simple string replacement, unlike our template and tree manipulation systems. 

Finally, our use of SEJITS to allow productivity-language (nonexpert) users to express graph computations in terms 
of simple filter predicates rather than converting the graph computation into a custom set of semiring algebra operators 
callable from CombBLAS has no analogue in Delite. (The Pegasus [22] framework is similar to CombBLAS, but its 
operations lack the algebraic completeness of CombBLAS’s semiring framework.) 

Specialization. Early work on specialization appeared in the Synthesis Kernel, in which a code synthesizer 
specialized kernel routines on-the-fly when possible [33]. Engler and Proebsting [13] illustrated the benefits of 
dynamically generating small amounts of performance-critical code at runtime. Jones [20, 17] and Thibault and 
Consel [37] proposed a number of runtime specialization transformations to increase performance of programs, 
including partial evaluation or interpreters customized for specific programs. Despite their different contexts, these 
strategies, like SEJITS, rely on selectively changing execution of programs using runtime as well as compile-time 
knowledge. 

Just-in-time code generation and compilation. Sun’s HotSpot JVM [31] performs runtime profiling to decide 
which functions are worth the overhead of JIT-ing, but must still be able to run arbitrary Java bytecode, whereas SEJITS 
does not need to be able to specialize arbitrary productivity-language code. Our approach is more in the spirit of 
Accelerator [36], which focuses on optimizing specific parallel kernels for GPU’s while paying careful attention to the 
efficient composition of those kernels to maximize use of scarce resources such as GPU fast memory. Asp is more 
general in allowing specializer writers to use the full set of Python features to implement specializers that capture their 
problem-solving strategy. 

Ongoing work. To support auto-tuning, we are building a global database that will aggregate runtime information 
(performance, hardware characteristics, and problem parameters) from specializers running at different sites. These data 
will enable future specializer invocations to base tuning parameters on information from similar problems on similar 
machines. As with specializers that take advantage of the input problem data, there is a tradeoff between the efficiency 
gained by using such information and the cost of repeating one or more specializer phases when the inputs are altered 

http://software.intel.com/en-us/articles/intel-array-building-blocks/
http://software.intel.com/en-us/articles/intel-array-building-blocks/
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in a way that affects the result. We intend to investigate this tradeoff using modeling techniques based on machine 
learning. 

We are investigating how best to compose specializers. We believe many combinations of Semantic Models can 
be composed while preserving both their productivity-level abstractions and the efficiency-level performance of the 
composition. Like database query optimization [2], we have a tree of operators communicating over edges, each 
of which may afford multiple implementations. Concepts from parallel/distributed query optimization, including 
independent parallelism, pipelined parallelism, partitioned parallelism [12] and adaptive query processing [3] could 
be applied to help allocate parallel resources to specializers and select strategies that allow specializers to cooperate 
effectively. 

Our prototype SEJITS framework uses Python as both the embedding language and the specializer implementation 
language, but these tasks are logically separate. Any modern scripting language that supports introspection, dynamic 
linking at runtime, and has a reasonable foreign function interface will serve as an embedding language. Ruby, Scala 
(http://scala.org) and Lua (http://lua.org), for example, all have these properties. 

Errors in a complex specializer, manifesting as incorrect behavior of generated code or cryptic feedback to the 
application programmer, can be difficult to diagnose due to its dynamic and language-crossing nature. Tool support for 
reproducing and isolating errors, visualizing and verifying code transformations, producing clear error messages, and 
modular testing of specializers is essential. 

Finally, we have only begun building specializers for a few domains. Other specializers, especially those expressing 
higher-level patterns such as Map, are in development as a response to application needs. We are also investigating 
other target platforms for specializers such as public cloud computing. 

 
 
7 Conclusions 

 
We have attempted to support two claims applying to two different types of SEJITS stakeholders. For efficiency 
programmers accustomed to writing high-performance code, SEJITS and the Asp library make their work more easily 
available and widely reusable by productivity programmers than would a standalone compiled library. For productivity 
programmers, SEJITS provides both parallel efficiency-level performance and performance portability across hardware, 
all with the same effort as sequential productivity programming. 

Because each specializer is essentially a self-contained mini-compiler for a particular DSEL, new specializers can 
be continuously added to the ecosystem. We hope others will contribute to this ecosystem and help raise the level of 
abstraction for productivity programmers while taking advantage of state-of-the-art efficiency-language parallel code. 

The software created in this project is available at sejits.org. It relies on other open source software including 
Python, SciPy, NumPy, and CodePy. 

http://scala.org/
http://lua.org/
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List of Symbols, Abbreviations and Acronyms 
 

Akx or Ak x the Matrix Powers kernel used in some Krylov-subspace solvers 
API Application Programming Interface 
Asp An implementation of SEJITS (q.v.) for Python 
BFS Breadth-first search of a graph  
BLAS Basic Linear Algebra Subprograms 
CG Conjugate gradient, a method for solving sparse linear systems 
CodePy A library for compiling and managing C functions called from Python 
CUDA the Compute Unified Device Architecture parallel programming framework 
DSEL Domain-specific embedded language 
DSL Domain-specific language 
EM Expectation-maximization method for training a model to match a set of observed training data 
FFI Foreign function interface, a way of calling functions compiled in one language from code 

written in another 
gcc The GNU C Compiler 
GMM Gaussian mixture model 
GPU Graphics processing unit 
KDT Knowledge Discovery Toolkit 
MD5 A one-way hash function for creating digests of large objects that avoids hash collisions with 

high probability 
MIS maximal independent subset of a graph such that no two vertices of the subgraph are connected 

to each other and all other vertices outside MIS are connected to at least one member of the MIS 
MKL the optimized Math Kernel Library supplied by Intel Corp. 
NumPy A third-party Python library that provides for efficient numeric-array data structures that can be 

shared between Python and C/C++ code 
OpenMP An open standard for parallel processing that works by annotating C code with pragmas identify- 

ing data-parallel constructs that can be exploited by a compatible compiler 
PHiPAC Portable High-Performance ANSI C, an early autotuner 
POSIX An ANSI standard describing the programming interfaces of Unix-like systems 
RMAT Realistic, Mathematically Tractable Graph Generation and Evolution Using Kronecker Multipli- 

cation [24] 
Roofline a visually intuitive representation of performance bounds on a particular kernel arising from 

bandwidth or compute limits on a particular architecture [39] 
SAID semiring additive identity operation 
SIMD Single instruction, multiple datastream parallel computing 
Scala A byte-compiled programming language featuring dynamic type inference 
SciPy The standard library for scientific computing operations included with the Python language 
SEJITS Selective, Embedded, Just-in-Time Specialization 
SpGeMM Sparse generalized matrix-matrix multiplication 
SPIRAL A DSL and library for Fast Fourier Transforms [34] 
SpMV Sparse matrix-vector multiplication 
STREAM (Not an acronym) A benchmark for sustainable memory bandwidth in high-performance com- 

puters [27] 
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